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Abstract

We review recent progress in formulating and solving the quantum theory of Eu-
clidean Einstein-Hilbert gravity in two dimensions. While the classical theory is topo-
logical and has no dynamics, its quantum counterpart is a highly nontrivial topological
field theory. The main characters in our story are the moduli spaces of Riemann
surfaces, which parametrize gauge equivalence classes of metrics on two-dimensional
surfaces. The study of their geometric structure—in particular, their symplectic forms,
volumes, and intersection numbers—gives us the tools to understand and calculate the
partition function and correlators of the theory.
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1 INTRODUCTION AND MOTIVATION

1 Introduction and Motivation

When I was younger and less burdened by my lack of knowledge of physics, I thought to
myself: “come on—how hard can quantum gravity be?” I had just learned that gravity
could be formally quantized by doing a path integral over all configurations of the spacetime
metric field, so I decided to give it a try. I chose to work in Euclidean signature, where the
math seemed to make more sense: spacetimes are just Riemannian manifolds, and the path
integral has no imaginary numbers in it and generally has better convergence properties.

I started with the case of dimension two: dimension zero is trivial, and dimension one
has no gravity at all, since all curvature tensors vanish identically there. My attempt to
write down the partition function Z of the theory started like this:

Z =

∫
Dg e−SE[g], SE[g] = − 1

16πG

∫
M

d2x
√
g R. (1.1)

Here g is the metric on a 2-manifold M , R is its scalar curvature, and SE is the corresponding
Euclidean Einstein-Hilbert action. By the Gauss-Bonnet theorem, SE is topological:

SE = − 1

16πG

∫
M

d2x
√
g R = − 1

16πG
· 4πχ(M) = −χ(M)

4G
. (1.2)

For a Riemannian 2-manifold without boundary, χ(M) = 2− 2h can be expressed in terms
of the genus h of M . We may therefore calculate the partition function of 2D gravity as a
sum, over all genera h ∈ N, of path integrals over metrics gh of a fixed genus h:

Z =

∫
Dg e−SE[g] =

∫
Dg e

2−2h
4G =

∞∑
h=0

∫
Dgh e

1−h
2G = e−

1
2G

∞∑
h=0

e−
h
2G (volh). (1.3)

This is where I got stuck: the topological nature of the action makes the path-integrand
constant, so I was left with the problem of computing the volumes of some vaguely-defined
spaces of metrics on 2-dimensional surfaces. I didn’t know how to proceed.

The purpose of this review is to explain how to define and compute these volumes. The
story, due primarily to Maryam Mirzakhani and Edward Witten, is astonishingly beautiful:
moduli spaces of Riemann surfaces are introduced as natural candidates for the spaces of
metrics I bemoaned above, their volumes are computed recursively, and a powerful method
is developed for extracting the correlation functions of topological gravity directly from
these volumes. The tale weaves its way through Riemann surfaces, symplectic geometry,
topological recursion, and intersection theory, and culminates with a surprising connection
to the theory of random matrices. For sanity’s sake, we will leave out the matrix part of the
story, focusing primarily on its geometrical aspects.

This paper is organized in two main parts. In the first part, we define moduli spaces of
Riemann surfaces and review Mirzakhani’s computation of their volumes. In the second part,
we develop intersection theory on these spaces and explain Witten’s approach to correlators
in topological gravity. Our discussion and commentary is interspersed throughout the paper,
and our short conclusion provides a quick summary.
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2 MODULI OF RIEMANN SURFACES

2 Moduli of Riemann Surfaces

What is the spaceM of metrics on which to define the path integral (1.1)? The most näıve
answer is simply that M should be the set of all Riemannian metrics on any 2D surface.
But this set is much too large to be useful: the action SE is constant on large swaths of this
set, and this makes Z formally infinite. It behooves us to organize the set of metrics into
equivalence classes on which SE is constant, pick a single representative of each equivalence
class, and integrate e−SE only over the set of representatives. In other words, we must
quotient out by the symmetries of SE.

Physicists often say that the Einstein-Hilbert action is “diffeomorphism invariant.” What
they mean mathematically is that SE assumes the same value on any two metrics g, g′ if the
associated Riemannian manifolds (M, g) and (M ′, g′) are isometric [1, 2]. So our first attempt
will be to take M to be the set of isometry classes of metrics on a 2D surface. Even then,
however, M is too large. The action has another symmetry: it is invariant under constant
global rescalings of the metric g −→ g′ = αg, with α ∈ R+. This is because the scaling of
the curvature R cancels the scaling of the volume form d2x

√
g in the integral defining SE.

In fact, this observation and its proof generalize1 to local scale transformations of the form
g −→ g′ = ug, where u is any positive function on the original manifold. These are variously
called conformal or Weyl transformations, and we must quotient them out as well. Thus we
arrive at a second attempt: M should be the set of metrics on a 2D surface up to isometry
and scale. Points in this set are called conformal structures.

This is almost a satisfactory definition. Before proceeding, we will impose one more
restriction: the surfaces we consider must be orientable.2 With this restriction, a miracle
occurs: every conformal structure on a surface automatically gives rise to a complex structure
on the surface which turns it into a Riemann surface:

Definition 2.1. A Riemann surface is a connected complex manifold X of complex dimen-
sion one. Equivalently, a Riemann surface is an oriented manifold of (real) dimension two,
together with a conformal structure.

We conclude that the space M over which to perform the path integral in (1.1) is the
set of conformal structures on Riemann surfaces. It is called the moduli space of Riemann
surfaces, and we will soon discover that it carries an enormous amount of hidden structure.

2.1 Uniformization and Moduli Spaces

Having defined Riemann surfaces, our first goal is to characterize and classify them. By way
of taxonomy, they look like rubber sheets, possibly with holes, boundaries, or punctures.
To begin, we will dispense with boundaries and punctures—we will return to them shortly.
In this simplified setting, our first result towards a classification of these surfaces is the
Riemann uniformization theorem, which says that the topology (in particular, the genus3)
of a Riemann surface completely determines its geometry [3].

1This follows because the Jacobian of the transformation cancels out at each point.
2This restriction is not strictly necessary, but without it things become more difficult down the line. One

may regard this choice as an explicit specification of the quantum theory whose physics we wish to study.
3We will henceforth change notation and use g instead of h to refer to the genus.

3



2.1 Uniformization and Moduli Spaces 2 MODULI OF RIEMANN SURFACES

Theorem 2.2 (Riemann uniformization). Every Riemann surface X has universal cover X̃
conformally equivalent to the Riemann sphere P1, the complex plane C, or the disk D2 ⊂ C.

• If X̃ ' P1, then X has constant curvature K = +1, genus g = 0, and trivial funda-
mental group. That is, X ' S2 = Σ0 (an apple) is the Riemann sphere.

• If X̃ ' C, then X has constant curvature K = 0, genus g = 1, and fundamental group
Z⊕ Z. That is, X ' T 2 = Σ1 (a donut) is a torus.

• If X̃ ' D2, then X has constant curvature K = −1, genus g > 1, and nonabelian
fundamental group. That is, X ' Σg (a pringle) is a hyperbolic surface.

The uniformization theorem gives us license to refer to Riemann surfaces by their genus,
so we will write X = Σg. It also splits the full moduli spaceM into the disjoint union of the
moduli spaces Mg of Riemann surfaces of genus g. We now seek a description of Mg: that
is, we want to know how many conformal structures exist on a surface of fixed genus. To
attack this question, we observe thatMg is the set of all Riemann surfaces up to isometry.4

Thus we writeMg = M̃g/Diff(Σg), where M̃g is the set of all Riemann surfaces of genus g,
and Diff(Σg) is the group of all Riemann surfaces to which Σg is isometric.5 Unfortunately,
Diff(Σg) is usually very hard to describe, so we proceed in two steps [3]:

1. Study the Teichmüller space6 Tg = M̃g/Diff0(Σg), where Diff0(Σg) is the connected
component of the identity in Diff(Σg). That is, instead of identifying all isometric
surfaces, we only identify Σg and Σ′g if all pairs of isometries between them are homo-
topic. In less intimidating words, we identify all surfaces that are isometric to Σg by a
diffeomorphism sufficiently close (i.e. continuously deformable) to the identity map.

2. Finish the job by dividing out the mapping class group (MCG) Γg = Diff(Σg)/Diff0(Σg)
to obtain the moduli space Mg = Tg/Γg. The MCG contains (homotopy classes of)
“large gauge transformations,” or isometries not continuously nonnected to the identity.
Usually Γg is finite or discrete; it captures what makes Mg topologically nontrivial.

It turns out that Diff0(Σg) contains “most” of the isometries of Σg, in that the quotient
space Tg is finite-dimensional and relatively easy to describe. However, Tg usually has infinite
volume, and its quotient by Γg fixes this problem by makingMg compact. We will now put
this procedure to work and describe the spaces Tg and Mg for all genera, in the process
making the notions in this paragraph more precise. We shall discover that the moduli space
is trivial in genus zero, rather tame in genus one, and extremely interesting in g > 1.

4Contrast this description with our attempt to defineM as the set of 2-manifolds up to isometry and scale.
By requiring our 2-manifolds to be Riemann surfaces, uniformization makes the phrase “up to isometry”
sufficient to describe all conformal structures on a surface of fixed genus non-redundantly.

5Many physicists say for shorthand that Diff(Σg) is the “diffeomorphism group” of Σg. This abuse of
terminilogy is justified, as long as it is clear that we refer only to the active diffeomorphisms of Σg, which
pull back the metric of Σg under the coordinate transformation that defines the diffeomorphism.

6Teichmüller was an ardent Nazi, and we will not allow his name to appear in this paper any more than
necessary. Interestingly, the extension of his work described here is due to an Iranian woman and a Jew.
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2.2 Classification of Surfaces 2 MODULI OF RIEMANN SURFACES

2.2 Classification of Surfaces

Genus zero. It is a standard result that the Riemann sphere P1 is the only compact
Riemann surface in genus g = 0. That is, every genus-zero surface is conformally equivalent
to P1. Therefore in this case the spaces T0 =M0 = {P1} both consist of a single point.

Genus one. Every torus can be constructed identifying the opposite sides of a parallelo-
gram. In more precise language, every torus can be realized as the quotient of the complex
plane C by a nondegenerate lattice Λ = τ1Z⊕ τ2Z ⊂ C. One may then ask which linearly in-
dependent generators τ1, τ2 ∈ C yield inequivalent conformal structures. Towards an answer,
note that any two lattices (i.e. any two parallelograms) related to each other by rotations
or dilations give rise to conformally equivalent tori. Thus without loss of generality, we may
twist and scale the lattice to set τ1 = 1. Next, observe that the lattice generated by 1
and τ2 is a reflection of the one generated by 1 and τ 2 about the real axis. These lattices
evidently yield equivalent tori, so without loss of generality we may take τ2 ≡ τ ∈ H+.
We conclude that the modulus τ parametrizes T1, so we have T1 = H+. There follows a
beautiful story about Möbius transformations and modular invariance. To keep the length
of this paper finite, we omit the details. The end result [4] is that Γ1 = PSL(2,Z), so that
M1 = H+/PSL(2,Z). In fact, it turns out that M1 is compact and inherits the natural
hyperbolic metric from H+. Its volume can be computed directly and is exactly π

3
.

Genus two and higher. Riemann surfaces combine three types of structure: conformal,
complex, and Riemannian. We took the conformal viewpoint in genus zero and the complex
viewpoint in genus one; here the metric viewpoint is useful. Each isometry class of a genus-g
surface7 is called a hyperbolic structure. We will describe the space of such structures by
carving Σg into simpler pieces called pairs of pants (surfaces homeomorphic to a 3-holed
sphere), counting hyperbolic structures on the pants, and then gluing the pants together.

By an inductive argument, it may be shown [5] that any genus-g surface can be cut along
3g− 3 simple closed curves γi into a disjoint union of 2g− 2 = −χ(Σg) pairs of pants. (One
decomposition for g = 2 is shown in Fig. 1.) Pants decompositions are not unique, but every
decomposition uses 3g − 3 curves and produces 2g − 2 pants. Each pair of pants inherits a
hyperbolic metric from the surface whence it was hewn, so it remains to describe the space
of hyperbolic structures on a single pair of pants, and then to explain how to glue pairs of
pants back together in different ways to produce inequivalent hyperbolic structures on Σg.

Figure 1: A pants decomposition of Σ2, illustrating the length and twist parameters.

7From now on, we take g > 1 unless explicitly stated, so that Σg is a hyperbolic surface by uniformization.
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2.3 Weil–Petersson Volumes 2 MODULI OF RIEMANN SURFACES

In fact, any Riemann surface admits a pants decomposition by totally geodesic curves.
This fact proves extremely useful in light of the following result [6]:

Proposition 2.3. Every pair of pants with totally geodesic boundary components of fixed
lengths ` = (`1, `2, `3) ∈ R3

+ admits a unique hyperbolic structure.

So the space Tg (not yet Mg) is the set of inequivalent hyperbolic structures obtained
by gluing together pairs of pants along 3g − 3 curves of specified lengths.8 Varying any
of these length parameters `i ∈ R+ changes the metric and hyperbolic structure of Σg. In
addition, there are also 3g− 3 twist parameters θi ∈ R (illustrated below) that describe how
the boundary components of the pants are screwed onto each other. Thurston [7] writes:

“That a twist parameter takes values in R, rather than S1, tends to be a confusing
issue... But, remember, to determine a point in Tg we need to consider how many
times the leg of the pajama suit is twisted before it fits onto the baby’s foot.”

In any case, the 6g − 6 length and twist parameters are known as Fenchel-Nielsen (FN)
coordinates on Tg = R3g−3

+ ×R3g−3, which thereby becomes a smooth manifold. In fact, more
is true [8]: Tg has the structure of a phase space, and the coordinates (`i, θi) ∼ (qi, pi) are
canonically conjugate to each other in the sense of Hamiltonian mechanics.

Theorem 2.4. The space Tg = R3g−3
+ ×R3g−3 is a (6g−6)-dimensional symplectic manifold.

Its symplectic form is given in Fenchel-Nielsen coordinates by

ω ≡
3g−3∑
i=1

d`i ∧ dθi. (2.1)

The existence of this symplectic form, aside from being completely miraculous, makes
the object ω3g−3 a volume form on Tg. Unfortunately, the volume of Tg is infinite. In a sense
that we will make precise below, dividing out Γg causes the quotients Mg to have finite
volume. These volumes were computed recursively by Maryam Mirzakhani. But before we
describe her work, we need to outfit our construction with boundaries.

2.3 Weil–Petersson Volumes

Suppose, therefore, that our Riemann surface has n boundaries in addition to g holes.
Without loss of generality, we may take the boundaries to be geodesic circles of lengths
L = L1, ..., Ln. If any of the Li vanishes, then the corresponding boundary degenerates into
a puncture. The Euler characteristic of such a surface is 2− 2g−n, and for g > 1, the space
Tg,n(L) parametrizes hyperbolic surfaces of genus g with n boundaries of fixed length L and
has dimension 6g − 6 + 2n.9 Moreover, Tg,n retains a symplectic structure.

8There are 2g− 2 pairs of pants, each with 3 boundary curves, for a total of 6g− 6 boundary circles. But
half of these curves must be identified in stitching Σg back together, for a total of 3g− 3 length parameters.

9The pants decomposition now cuts the surface along 3g−3+n curves, each of which contributes a length
and a twist parameter for a total of 6g−6 + 2n FN coordinates. Crucially, the n boundary curves have fixed
lengths L and are not glued to anything, so they contribute neither length nor twist parameters.

6



2.3 Weil–Petersson Volumes 2 MODULI OF RIEMANN SURFACES

Next, we quotient by Γg,n(L), which can be rather complicated. We then obtainMg,n(L),
but in a nasty surprise the moduli space is non-compact! Fortunately, the Deligne-Mumford
compactification Mg,n(L) is available to “plug the holes” inMg,n(L) by including degenerate
surfaces like those with pinches. With these upgrades, we state a stunning theorem [8]:

Theorem 2.5. Mg,n(L) ∼ R6g−6+2n has the following topological and geometric properties:

• It is simply connected and compact. When L = 0 (i.e. if only punctures are allowed),
it is also orientable. Topologically, we have Mg,n(L) =Mg,n(0) ≡Mg,n.

• The quotient by Γg,n makes it an orbifold.10 In particular, Mg,n(L) admits a finite
cover by a manifold. It looks like a manifold with a finite number of folds and corners.

• It has a real analytic structure, and when L = 0, this is also a complex structure.

• It inherits the natural Riemannian metric and symplectic structure from Tg,n(L). In
Fenchel-Nielsen coordinates, the Weil–Petersson symplectic form on Mg,n(L) is

ωL =

3g−3+n∑
i=1

d`i ∧ dθi. (2.2)

The last of these results, proven by Wolpert (and sometimes called “Wolpert’s magic
formula”), assures us that Mg,n(L) has a volume form, and by compactness this volume is
finite. SinceMg,n(L) is topologically equivalent toMg,n(0), one may ask if their symplectic
structures (and hence volumes) are equal. The answer is no, and the precise relation between
the symplectic forms ωL and ω0 is the content of the Duistermaat–Heckman (DH) theorem,
which we will soon build up enough technology to state. In any case, we are led naturally
to define the volumes of the spaces Mg,n(L) using their symplectic forms. Our definition
comes with some conventional prefactors [9], placed with a great deal of foresight.

Definition 2.6. The Weil–Petersson (WP) volumes of the moduli spaces Mg,n(L) are

Vg,n(L) ≡ 1

(2π2)3g−3+n

∫
Mg,n(L)

ω3g−3+n
L

(3g − 3 + n)!
“ = ”

1

(2π2)3g−3+n

∫
Mg,n(L)

eωL . (2.3)

The last “equality” makes sense if one treats eωL as a power series in ωL and observes that
only the top power of ωL can be integrated overMg,n(L), so all other terms vanish. Despite
appearances to the contrary, the WP volumes can actually be computed. For example, we

will soon be able to prove (e.g.) that V1,1(0) = 1
2π2

(
L2

24
+ π2

6

)
. In the next subsection, we

will loosely describe Mirzakhani’s approach to computing these volumes using a recursive
argument based on pants. The main result of the analysis is that Vg,n(L) is a polynomial in
the L2

i whose coefficients are positive rational multiples of powers of π.
N.B. Our exposition below primarily follows [9], but is heavily influenced by several of

Mirzakhani’s beautiful papers on the geometry of moduli spaces: [10, 11, 12, 13].

10To be precise and/or unbearably pedantic, Mg,n(L) is actually an algebro-geometric generalization of
an orbifold called a stack ; in the literature, it is often called the moduli stack of stable curves.
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2.4 Topological Recursion

We have already introduced the idea of cutting a Riemann surface along a closed geodesic to
split it into components with fewer moduli. Mirzakhani’s idea was that given the volumes
of these simpler moduli spaces, one can integrate these volumes over the choice of cutting
curve to obtain the volume of the original moduli space.

Of course, every surface eventually falls apart into pairs of pants, but we imagine making
the cuts one by one. We focus on the result of the first cut: it can either split the surface into
two, in which case we have cut along a separating curve; or not, in which case we have cut
along a non-separating curve. In either case, we take the curve to be a simple, closed geodesic
of length b. To describe what happens in each case (see Fig. 2), we denote by Σg,n(L) a
Riemann surface of genus g with n geodesic boundaries of lengths L = (L1, ..., Ln) ∈ Rn

+.
We will assume for the moment that the original surface has no boundaries.

• If the curve is separating, then it splits Σg into two surfaces of genera g1, g2 < g, with
g1 + g2 = g. It also introduces a boundary on each one: Σg

// Σg1,1(b) t Σg2,1(b).

• If the curve is non-separating, then it opens up one of the holes on Σg. It thus lowers
the genus by 1; it also introduces two equal boundaries: Σg

// Σg−1,2(b, b).

Figure 2: Separating and non-separating geodesics and the moduli they introduce.

If all of the lower-genus WP volumes Vg′,n (for g′ < g) are known,11 then one might hope
to obtain a recursive formula for Vg by first counting up the number of hyperbolic structures
on the simpler surface(s), and then integrating over all possible choices of the boundary
length b ∈ R+ and its associated twist parameter θ ∈ [0, b).12 That is, we hope for

Vg
?
=


∫ ∞
0

db

∫ b

0

dθ Vg1,1(b)Vg2,1(b) (separating),∫ b

0

db

∫ b

0

dθ Vg−1,2(b, b) (non-separating).

(2.4)

11More precisely, we only need to know Vg′,1 for all 1 < g′ < g and Vg−1,2.
12Notice that θ ∈ S1(b) is valued in a circle, not in R, because we are working directly in the moduli space.
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2.4 Topological Recursion 2 MODULI OF RIEMANN SURFACES

Finally, suppose that the original surface comes to us with boundaries of its own—say n of
them, with prescribed lengths L. In the separating case, these boundaries will be partitioned
arbitrarily among the two components created by the cut. And in the non-separating case,
the two new boundaries (b, b) will be appended to the list L of pre-existing boundaries.

The main problem with this idea is that there is no canonical choice of geodesic along
which to cut. Mirzakhani dealt with this problem by choosing all of them. To wit: let
M∗

g,n(L) denote the set of all pairs (X, γ), where X is a hyperbolic structure and γ is a

simple closed geodesic on X. One should view π : M∗
g,n(L) −→Mg,n(L) as a bundle, where

the fiber over X ∈Mg,n(L) is the set SX of simple closed geodesics on X, and the projection
π : (X, γ) 7−→ X forgets γ. Suppose that we had a function F : R+ −→ R that acts somewhat
like a measure on the set of lengths bγ of geodesics γ ∈ SX , in the sense that F satisfies∑

γ∈SX

F (bγ) =

∫
π−1(X)

F (bγ) = 1. (2.5)

Then one can find the volume ofMg,n(L) by “unfolding the integral” and integrating against
F over the total space M∗

g,n(L). Denoting the WP volume form by ν, we have

Vg,n(L) =

∫
Mg,n(L)

ν =

∫
Mg,n(L)

1 · ν =

∫
Mg,n(L)

(∑
γ∈SX

F (bγ)

)
ν =

∫
M∗g,n(L)

F (bγ)ν. (2.6)

In the last step, we realized that the sum over SX was being performed once for every surface
X ∈Mg,n(L), so the notation could be cleaned up by integrating over M∗

g,n(L) instead.

The view from M∗
g,n(L) clarifies the discussion above. The proposal to integrate over

b and θ was a dimly realized attempt to parametrize M∗
g,n(L) by the length and twist

parameters of γ ∈ SX . (One imagines cutting along γ and then gluing X back together;
changing either the length or twist of γ affects both the hyperbolic structure of X and
the curve γ itself.) This parametrization is only really correct when a single cut along γ
instantly decomposes X into pairs of pants. In the general case, one must develop the
more sophisticated machinery of multi-curves to slice X into multiple pants at once [8]. We
will not attempt to do so here. Nevertheless, the main ideas of Mirzakhani’s recursion are
captured in the following formula [9], which summarizes our discussion so far:

Vg,n(L) ∼
∫ ∞
0

db bF (b)

[
1

2

∑
g1,g2

g1+g2=g

∑
L1,L2

(L1,L2)=L

Vg1,n1+1(L1, b)Vg2,n2+1(L2, b) + Vg−1,n+2(L, b, b)

]
.

(2.7)

This formula improves (2.4) by including the magic function F in the integrand and per-
forming the trivial θ integral to get a factor of b. In the first term, which describes separating
curves, we sum over all partitions of genera and boundaries, and the factor of 1

2
accounts for

overcounting if the two sub-surfaces cut by γ are exchanged. The second term describes the
non-separating case and is straightforward. All together, this formula captures the spirit, if
not all of the details, of topological recursion à la Mirzakhani.
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2.5 The Calculation of V1,1

The abstract ideas introduced above can be made very explicit in the case of M1,1(0), the
(compactified) moduli space of punctured hyperbolic tori. The calculation begins by taking
note of the miraculous McShane identity [14]:

Proposition 2.7 (McShane). Let X ∈M1,1(0) by a hyperbolic torus with one cusp. Then,∑
γ∈SX

1

1 + e`γ
=

1

2
. (2.8)

The sum runs over all simple, closed geodesics γ on X with length bγ.

This identity pulls the magic function F (bγ) = 2/(1 + e`γ ) out of a hat. With some more
work, however, Mirzakhani was able to find a family of such functions for all other (g, n).
With the McShane identity in hand, Mirzakhani views the sum over SX as an integration
along the fiber of M∗

1,1(0) at X. She thereby unfolds the integral:

V1,1(0) =

∫
M1,1(0)

ν =

∫
M1,1(0)

1 · ν =

∫
M1,1(0)

(∑
γ∈SX

2

1 + e`γ

)
ν =

∫
M∗1,1(0)

(
2

1 + e`γ

)
ν. (2.9)

The next step is to give an explicit parametrization of M1,1(0) by Fenchel-Nielsen co-
ordinates, i.e. length and twist parameters [8]. To do so, we cut each punctured torus
X ∈ M1,1(0) along a geodesic γ ∈ SX , and then glue X back together. Happily, the topol-
ogy of once-punctured tori is simple enough that every such cut opens up the hole in X, as
seen in Fig. 3. That is, each cut produces a degenerate pair of pants whose “waist” is the
puncture on X.13 By the uniqueness of hyperbolic structures on pants, we conclude that
each pair (X, γ) ∈ M∗

1,1(0) is labeled uniquely by a single length parameter—the length
`γ ∈ R+ of γ—and a single twist parameter θγ ∈ [0, bγ). Crucially, this parametrization was
not available for M1,1(0), which did not come with geodesics to cut along. In any case, we
coordinatize M∗

1,1(0) as a triangular wedge in R2:

M∗
1,1(0) =

{
(`, θ) ∈ R2

∣∣ ` > 0, θ ∈ [0, `)
}
. (2.10)

Figure 3: A degenerate pair of pants that, perhaps, doubles as a subtle critique by Mirzakhani
of the unrealistic aesthetic expectations placed on the body by modern society.

13The geodesics considered here must be closed, so they cannot hit the puncture on X.
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3 INTERSECTION THEORY ON MODULI SPACE

The Weil-Petersson form is ω = d` ∧ dθ, so we have ν = 1
2π2 (d` ∧ dθ), and therefore

V1,1(0) =

∫
M∗1,1(0)

(
2

1 + e`γ

)
ν =

1

2π2

∫ ∞
0

∫ `

0

(
2

1 + e`

)
d` dθ =

1

2π2

∫ ∞
0

2`

1 + e`
=

1

12
. (2.11)

Two final remarks are in order. First of all, the moduli spaceM1,1(0) is special in that every
point is a so-called orbifold point, i.e. a corner or fold of what used to be a smooth manifold.
This strange happenstance comes from the existence an extra Z2 symmetry of the surfaces
X in the case (g, n) = (1, 1). Due to the symmetry, we must further divide V1,1 by two [3]:

V1,1(0) =
1

24
. (2.12)

Second of all, the result above is usually reported as V1,1 = π2

12
. The discrepancy is due to

our normalization of the Weil-Petersson form by the extra conventional factor of 2π2.

3 Intersection Theory on Moduli Space

To be continued...

3.1 Intersection Numbers

3.2 Yang-Mills vs. Gravity

3.3 The MMM Classes

3.4 Correlators at Last

3.5 Comments on Topological Gravity
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4 SUMMARY AND CONCLUSIONS

4 Summary and Conclusions

In this review, we have explored some properties of the moduli spaces of Riemann surfaces.
Our story began with some basic musings on Euclidean quantum gravity in 2 dimensions,
where these moduli spaces appeared as the natural domains of integration for the gravi-
tational path integral. We classified these spaces using the Riemann uniformization the-
orem and quickly focused on the case of hyperbolic surfaces, whose moduli spaces Mg,n

are extremely rich. Using geometric constructions like pants decompositions, we found that
they admit orbifold compactificationsMg,n which carry a natural Weil-Petersson symplectic
form. This symplectic structure allowed us to recount a recursive method, developed by
Mirzakhani, for computing the volumes of the moduli spaces.

From a näıve perspective, the WP volumes allow one to directly obtain the numerical
value of the partition function of 2D Euclidean Einstein-Hilbert gravity. It would be inter-
esting, out of pure curiosity, to actually carry out this calculation. To be precise, one should
include the Gibbons-Hawking-York boundary term in the gravitational action (1.1) in addi-
tion to the scalar curvature. Then, after suitably modifying the Gauss-Bonnet argument in
(1.2), one should emend (1.3) to include a sum over the number of boundary components,
as well as an integral over the corresponding boundary lengths. These changes have the
effect of integrating over all of the moduli available to a 2-dimensional Euclidean manifold.
I would be curious to learn whether such a calculation exists in the literature.

More interesting than the partition function Z is its extension to the generating functional
Z[J ] of correlation functions of a given theory. It seems rather complicated to directly
evaluate a version of (1.1) with arbitrary sources J added, not least because it is not obvious
what the observables in a topological theory of gravity should be. Witten’s answer—that the
correlators of 2D gravity are intersection numbers on the moduli spaces discussed above—
puts the theory on solid footing. In the process developing intersection theory on Mg,n

using symplectic reduction and the Duistermaat–Heckman theorem, we are led to define the
cohomology classes ψ of forms that live on Mg,n. Their integrals over Mg,n constitute the
aforementioned correlation functions, and they can be used to construct the extremely useful
MMM classes κ. One of the κ classes is unexpectedly cohomologous to a multiple of the WP
symplectic form, and Witten was able to use this relation to derive a recursive formula for
the correlators in terms of the WP volumes themselves. The upshot is that the volumes Vg,n
contain a great deal more information than initially meets the eye.

So by carefully studying the moduli spaces of Riemann surfaces, we are able to do cal-
culations in and effectively solve the quantum-gravitational theory of these surfaces.
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